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Observation of cusps during the levelling of free
surfaces in viscous flows
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We experimentally study the formation of cusps at the free surfaces of viscous fluids
in three simple cases that portray possible natural or industrial procceses. Two cases
concern levelling driven by gravity: the case (A) of a sinusoidal surface and the case
(B) of a single groove. In the third case (C), an initially sinusoidal surface evolves
under the action of a fast enough lateral compression that the effects of gravity are
negligible. Case (A) shows a critical aspect ratio above which the cusps form. Case
(B) allows a more detailed study of the evolution of the cuspidal structure, which does
not change in shape but reduces its size according to a simple power law dependence
in time. In case (C), cusps form even for small initial aspect ratios.

1. Introduction
The levelling of a rippled free surface of a very viscous liquid may occur in

non-trivial ways, which merit attention both for theoretical and practical reasons.
Let us consider, for instance, a smoothly perturbed horizontal free surface: even in
the simplest case in which gravity is the only driving force, the levelling process
may pass through a stage characterized by the presence of sharp grooves with
cuspidal entrances. This problem was numerically studied by Pozrikidis (1997) for a
sinusoidal perturbation. He found that only below a critical aspect ratio (amplitude
to wavelength ratio) of the initial corrugation do the ripples damp out more or less
exponentially with time, but that above this critical value, cuspidal entrances appear
at the bottom of the valleys while the summits remain smooth. Once the cuspidal
entrances form, they become smaller and smaller as the levelling proceeds, but as far
as those results show, the vertex lines remain sharply defined and can be regarded
as singular lines of the surface, where the direction of the outgoing normal changes
abruptly by 180◦.

Cuspidal entrances like those appearing in the above quoted numerical simulations
seem to be typical surface structures of Stokes flows. They originate in a variety of
situations, and have received considerable attention in the last years. For instance,
Joseph et al. (1991) and Jeong & Moffatt (1992) experimentally studied steady
cusps formed at the surface of a viscous liquid in a basin with the flow driven
by rotating cylinders. Jeong & Moffatt also found an exact solution of the Stokes
equation that describes a steady flow near a cusp. When capillary forces are present,
the ‘cusp’ has strictly speaking a rounded apex, but the maximum curvature is an
exponentially increasing function of the capillary number, and becomes extremely
large even for relatively low values of this number. In a different line of work,
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Howison & Richardson (1995) found solutions that describe the formation of cusps
on the surface of cylindrical drops sucked from their axis, and Tanveer & Vasconcelos
(1994, 1995) studied their appearance at the surface of rippled cylindrical bubbles
immersed in a convergent flow. Also, Liu, Liao & Joseph (1995) investigated the cusp
that forms at the lower part of an ascending bubble. Recently (Marino, Thomas &
Gratton 1997), it was noted that the entrance below the prominent nose of a creeping
current in the neighbourhood of the contact line presents the essential characteristics
of a cuspidal entrance.

A noteworthy property of these structures is that the apex line moves at a finite
speed with respect to the fluid, in such a way that the free surface elements are
convected inside the fluid bulk through the cusp, whose apex line could be regarded
as a ‘sink’ of the free surface. Accordingly, cusps are expected to form when and
where the flow enforces a strong decrease of the free surface area. A similar situation
may arise in quite natural ways, such as the above mentioned levelling of a rippled
surface by gravity, the lateral squeezing of the fluid between rigid walls, etc. The
formation of cusps is, then, a process of practical interest which not only affects the
surface morphology but also provides a mechanism for conveying surface material
into the bulk of a viscous fluid.

Here we describe experiments concerning the formation and evolution of cusps
at the surface of a very viscous fluid in the three simple cases sketched in figure 1.
Case (A) corresponds to the above mentioned numerical study by Pozrikidis, i.e. the
levelling due to gravity of a free surface initially perturbed by a sinusoidal ripple.
In agreement with Pozrikidis’ results, if the initial aspect ratio of the perturbation is
high enough, its shape changes strongly during the levelling. Even though the peak
to peak amplitude always decreases, cusps form in the valleys. In case (B) the flow
is also driven by gravity alone, but the initial perturbation is a deep single groove of
approximately triangular shape. A large cusp forms very soon at the bottom of the
groove, so that its evolution may be followed with accuracy. The profile of the surface
resembles that of the steady cusp considered by Jeong & Moffatt (1992), though
in our case the flow is unsteady. The size of the structure decreases gradually in a
self-similar way till it becomes of the order of the capillary distance (≈ 0.13 cm for
the fluid used). The last stage is a progressive smoothing of the profile attributable
to capillarity. Finally, in case (C), the surface is initially perturbed as in case (A), but
the flow is driven by a fast enough lateral compression so as to make gravity effects
negligible. In spite of the apparent differences, we observe that the surface evolution
associated with this flow retains many features of the surface evolution of a rippled
cylindrical drop sucked from its axis, theoretically studied by Howison & Richardson
(1995). Basically, cusps form at the bottom of the valleys and a decrease in size of the
entire cusped periodic structure follows without appreciable changes in the shape.

2. Experimental setup
We produce the flows within an uncovered rectangular box made of thick (1 cm)

aluminium plates. Two opposite walls separated by 10 cm are fixed. The other two
walls can slide driven by two independent screws, so that the distance between them
may be gradually changed between 15 cm and 5 cm, thus allowing the squeezing of
the fluid required in case (C) (figure 1). For cases (A) and (B), we keep this distance
fixed to 11 cm.

The fluid is a silicon putty (Gomme GSIR, produced by Rhône-Poulenc) with
viscosity ν ≈ 1.5× 105 S, ρ = 1.12 g cm−3 and surface tension γ ≈ 20 dyn cm−1. The
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Figure 1. (A) Levelling of a rippled free surface driven by gravity alone, (B) levelling of a single
groove and (C) squeezing of a corrugated free surface.
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Figure 2. Experimental setup: the fluid (silicon putty) is in the container (1), the corrugated free
surface is impressed with a mould (2), which is covered with a thin polythene sheet (3); the slopes
(4) are present only in case (C).

perturbations of the free surface are impressed by means of wood moulds, covered
with thin polythene sheets in order to avoid adherence between the wood and the
fluid (see figure 2), so expediting removal. The ripples are always impressed parallel
to the sliding walls. The experiments typically last between 102 to 103 s and involve
scale lengths of a few centimetres. It is well known that a viscous fluid of that high
viscosity is not usually Newtonian, but it was observed that in this range of strain
rates, the putty does not depart very much from a Newtonian behaviour (see the
Appendix). Therefore, the observed evolutions of the free surfaces are reasonable
representations of what should be expected for Stokes flows.

We observe the height profiles h(x, t) with the aid of a simple optical system. A
plane sheet of light is generated by expanding and collimating a He-Ne laser beam
with a combination of cylindrical and convergent lenses. This sheet illuminates the
free surface of the opaque putty, generating there a bright line about 0.02 cm thick,
which is recorded with a CCD camera. We choose the orientation of both the plane
of incidence of the light sheet and of the axis of the camera in such a way that
the luminous line portrays the profile h(x, t) of the free surface without appreciable
distortions.
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In the interpretation of the results we always assume that the fluid velocity in
the transversal y-direction (i.e. along the grooves) is negligible and, in general, that
the dependence on this coordinate may be neglected within the observation region.
This assumption is reasonable near the middle vertical plane of the box, separated
from the fixed walls by distances considerably larger than the scale of the surface
perturbations under study. On the other hand, by means of naked eye observations
of the free surface from the top, we take care that neither the direction nor the depth
of the grooves change appreciably along y within the observation region.

3. Case (A): levelling of a periodic free surface
In this case the initial profile of the fluid is approximately given by h(x, 0) =

h0 + a0 sin 2πx/λ. We use three moulds with the same value of λ = 1.5 cm, and
different amplitudes, namely, a0 = 0.23, 0.5 and 0.75 cm. We also change h0 from
2 cm to about 5 cm; however, as this change does not produce significant effects we
report here only the results corresponding to h0 = 4.5 cm.

In figure 3 we show sequences of the profiles for a0 = 0.23 cm and 0.75 cm. In
the former case, whose aspect ratio is a0/λ = 0.153, the free surface maintains its
sinusoidal shape with an amplitude decreasing almost exponentially with time. This
is in agreement with the theoretical solution valid for small amplitudes (Jeong &
Moffat 1992) and infinite depth (linear approximation)

h(x, t) = a0 exp

(
− 1

4π

λgt

ν

)
sin
(

2π
x

λ

)
. (3.1)

In figure 4, we report the experimental time evolution of the amplitude in comparison
with the exponential coefficient a0 exp

(−λgt/4πν).
For the intermediate case (a0 = 0.5 cm and a0/λ = 0.33, not reported in the figures)

the decrease of the amplitude is accompanied by a deformation of the profile: the
valleys sharpen and the summits remain smooth; however, we do not observe cusps.
For a0 = 0.75 cm and a0/λ = 0.5, the deformation becomes stronger as shown in
figure 3(b). Figure 5, which is a magnified view of the evolution of a particular valley,
shows the presence of a cusp at an intermediate stage (t = 571 s). For comparison, we
plot the theoretical profile y ∝ x2/3 of a cusp (Joseph 1992; Joseph et al. 1991). The
results suggest that there is a critical value of a0/λ for which cusps appear, and that
this value is between 0.33 and 0.5. This is fairly consistent with the numerical work of
Pozrikidis (1997) (figure 8 of his work, where a/H = 2a0/λ), where the critical aspect
ratio a0/λ is between 0.2 and 0.4. Though the threshold condition for cusp formation
is not accurately obtained, the experiments show that cusps actually appear beyond
some value of a0/λ.

Note that the cusps are temporary; they tend to disappear under the effect of
capillarity when the amplitude is of the order of the capillary length a = (γ/ρg)1/2 ≈
0.13 cm. By using (3.1), the capillary number Ca = µ (dh/dt)/γ is given by Ca =
a0λ/a

2; thus, Ca ≈ 20 in figure (3a) and Ca ≈ 66 in figure (3b).

4. Case (B): levelling of a single perturbation
In order to study in more detail the evolution of a cusp during the levelling driven

by gravity, we observe the evolution of a single large perturbation. We impress on the
fluid an approximately triangular deep groove of 4 cm width and 7 cm depth in the
middle of the container. Initially, the apex of the groove is close to the bottom of the
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Figure 3. Viscous–gravity levelling (case A) for: (a) a0 = 0.23 cm and λ = 1.5 cm; the profiles
correspond to the times t = 3, 302, 604 and 1178 s. (b) a0 = 0.75 cm and λ = 1.5 cm; the profiles
correspond to the times t = 30, 305, 604 and 1205 s.

container. Soon afterwards, a cusp appears at the rapidly lifting apex. In figure 6(a)
we show a relatively advanced stage of the evolution of the free surface, where a
cusp in the bottom of the groove is clearly seen. Successive profiles have different
size but approximately the same shape. By scaling all the lengths with the depth δ(t)
(distance between the apex of the cusp and the maximum height), we find that all
the profiles have the same shape, as shown in figure 6(b). This means that this stage
of the evolution is self-similar; we verify that this is true almost independently of
the details of the initial groove shape. In the neighbourhood of the apex, the height
profile may be approximated by y/δ ' 0.85(x/δ)2/3 (see figure 6b).

Figure 7 shows the time evolution of the depth δ(t), which is well fitted by the
power law δ(t) = 2.1ν/gt. This dependence may be explained in terms of a simple
balance of forces, namely the gravity buoyancy force, that is the weight of the liquid
that would fill the groove, Fg ∼ ρgδ2L (where L = 1 is the unit length along the
groove) and the viscous force (stress due to a typical gradient of velocity µ(dδ/dt)/δ
times the area where this stress acts, of magnitude ∼ Lδ) Fµ ∼ −µ((dδ/dt)/δ)Lδ. It
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Figure 4. Amplitude vs. time for the levelling of a sinusoidal corrugation (case A) with
a0 = 0.23 cm.

follows that

ρgδ2 ∼ −µdδ

dt
, (4.1)

and integrating, we obtain the scaling law

δ(t) ∼ µ

ρgt
, (4.2)

whose coefficient is approximately 2.1 according to our experiments.
In principle, in a flow without capillarity, the cusp should remain indefinitely. But in

a real fluid it becomes rounded when the capillary number Ca = µ(dδ/dt)/γ becomes
of the order of unity; therefore, the cusp disappears when δ becomes of the order of
the capillary length a. In this experiment, Ca varies from 21 at the beginning of the
experiment to 0.95 at the end, when the cusp starts to disappear.

5. Case (C): compression of a free surface
In the compression experiments, the initial surface profile is the same as in case

(A), but the decrease of the surface area is now due to the compression of the fluid in
the x-direction between the two moving walls of the box. However, since the surface
of a slab of fluid squeezed in this way suffers strong long-scale deformations, some
special cautions must be adopted. In fact, the surface tends to rise in the middle and
to curl near the moving walls, mainly because the fluid cannot slip at the walls. A
simple way to overcome this difficulty is sketched in figure 2: the corrugated region
under study is connected to the moving walls by two fluid regions 2.5 cm wide with an
about uniform slope. We empirically found that when a fluid so modelled is squeezed
between two walls moving at equal speed, the central region of the free surface lifts
almost uniformly; besides, the approaching grooves remain approximately equidistant,
thus showing that the compression is also practically uniform.

The second point is that, in contrast to case (A), we intend to produce a surface
evolution little affected by both gravity and capillarity. Therefore, the compression
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Figure 5. Magnified representation of a valley in an experiment with the same initial condition as
figure 3(b) (case A), for times 251, 378, 571 and 1686 s. The line is the power law y ∝ x2/3.

should be completed in a time short in comparison with the decay time of a small-
amplitude perturbation due to gravity alone. As this time is about 103 s (see case
(A)), we design the experiments in order to obtain a compression ratio λ0/λend ≈ 2
in about 110 s. The speed v of each lateral wall is, then, of the order of 0.02 cm s−1,
and the corresponding capillary number Ca = vµ/γ is about 120, thus ensuring that
capillary effects are negligible.

In figure 8 we show the evolution of the free surface for λ0 = 1.5 cm and a0 =
0.12 cm; it is clearly seen that cusps appear in the valleys. Since the corresponding
aspect ratio is a0/λ = 0.08, well below the limit found in case (A), their formation
must be ascribed to the compression.

The sequence of figure 8 is representative of the behaviour observed for other
aspect ratios, and differs very much from case (A). There is a first stage, before
the formation of the cusps, characterized by an increase of the aspect ratio of the
ripple; the wavelength shortens while the amplitude grows. This is the behaviour
expected prima facie in a pure straining flow, where every parcel shrinks horizontally
and expands vertically by the same factor. However, the growth of the aspect ratio
is accompanied by a visible sharpening of the valleys which finally results in the
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Figure 6. (a) Sequence of the height profiles for a single groove (case B), t = 275.6, 497.6, 672.4
and 967.9 s; the time evolution is indicated by the arrow. (b) Same profiles scaled with the depth δ(t).

formation of cusps. During the following second stage, the wavelength of the ripple
continues to decrease according to the compression, but the amplitude decreases too,
in such a way that the shape of the perturbation remains about invariant.

6. Discussion and conclusions
The results obtained in case (A) show a very good quantitative agreement with the

theory for the linear damping of a small-amplitude ripple. For large amplitudes, the
experiments qualitatively agree with the numerical simulations of Pozrikidis, and the
critical aspect ratio a0/λ for the cusp appearance is consistent with his results. Also,
the size of the cusped entrance of case (B) decays as predicted by a simple and general
dimensional model. These elements, together with the rheological behaviour reported
in the Appendix, provide confidence that the observed behaviours are representative
of those expected for a Newtonian fluid, i.e. that the effects related to the rheology
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of the particular putty used are not substantial in the range of the shear rates of the
experiments.

In all the cases, capillarity does not prevent the formation of near cusps provided
that the corresponding capillary number Ca is larger than unity in the neighbourhood
of the apex. If the flow is driven only by gravity, as in cases (A) and (B), this condition
means that the capillary distance should be smaller than the typical length scale of
the perturbation. Therefore, the effect of the capillarity in gravity-driven flows is to
smooth the cusps when they become small, thus limiting the presence of the cusps
to an intermediate stage of the ripple evolution. This apparently does not happen in
case (C), since the capillary number is related to the speed of advance of the lateral
walls, and it is very large as long as the walls move, so that the smoothing of the
cusps due to the capillarity is not relevant.

It is interesting to consider the results of case (C) having in mind the exact solution
of Howison & Richardson (1995) for a cylindrical drop with an arbitrary number of
ripples at the surface that is being sucked by a linear sink in the centre. When the
number of ripples is very large, we can focus on a small region near the free surface,
which looks like a corrugated plane. As the drop is sucked, the surface shrinks, thus
producing a compression of the ripples similar to those originated by the lateral
compressing of case (C). Basically, cusps form at the bottom of the valleys and a
decrease in size of the entire cusped periodic structure follows without appreciable
changes in the shape. The similarity with our experiment is marked. Naturally, the
shapes of the surface in both problems are not the same, but they share two features,
namely that the surface shrinks in both cases and that the characteristic profile is of
the form y ∝ x2/3 in the neighbourhood of the cusp (see, for instance, figure 6b for
case (B)).

Finally, we want to point out that the process studied may actually occur in flows
of viscous melted plastics, asphalts, lava, muds, etc. The condition is that viscous
forces must dominate over capillary forces, i.e. the capillary number should be large
compared with unity. It is likely that the rheology of the fluid is not a critical point.
In order to verify this fact, we repeated the compression experiment (C) using pottery
clay (strongly non-Newtonian). The observed evolution of the free surface, including
the formation of cusps, resembles very closely that of the experiments with silicon
putty.

This work was supported by the Consejo Nacional de Investigaciones Cientı́ficas y
Técnicas (CONICET, Argentina), the Comisión de Investigaciones Cientı́ficas de la
Provincia de Buenos Aires (CICPBA, Argentina), and the Universidad Nacional del
Centro de la Provincia de Buenos Aires (Argentina). We wish to thank Dr Luis P.
Thomas and Dr Beatriz Marino for their participation in the measurements reported
in the Appendix.

Appendix
In view of the high viscosity of the silicon putty (Rhöne-Poulenc) used in our

experiments, its rheological behaviour merits special attention. This behaviour was
investigated by using a rotational viscometer specially built in the laboratory for this
purpose. The device is a wide-gap concentric cylinder viscometer which allows one
to measure the torque τ required for a spindle to rotate an angle θ inside the putty.
The spindle of radius Rs (≈ 0.5 cm) hangs from a wire of length l = 31.3 cm and is
immersed to a depth L = 9.2 cm into a large volume of silicon putty prepared as for
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the experiments. After an initial angular displacement (' 0.1 rad), the spindle returns
to equilibrium with a decreasing angular velocity ω = −dθ/dt. A light beam deviated
by a small mirror placed at the top of the spindle allows one to measure the angular
deviation θ(t) on a far screen (the motion of the luminous point is recorded with a
video camera).

As is usual we shall assume that the relation between the shear stress σ and the
strain rate ε is given by a power-law relationship (Ostwald fluid)

σ = k |ε|n , (A 1)

where 0 < n < 1 for shear-thinning fluids. In particular, σ and ε at the wall of the
spindle are given by (Barnes, Hutton & Walters 1989)

σ =
τ

2πR2
s L
, (A 2)

ε =
2ω

n
(
1− b2/n

) , (A 3)

where b is the ratio of the spindle radius Rs to the external cylinder radius Rc = 5 cm
(b = 0.1). On the other hand, the torsional rigidity C = τ/θ of a cylindrical rod (wire)
is given by (Landau & Lifshitz 1986):

C =
Gπr4

2l
, (A 4)

where G (≈ 9.16× 1011 g cm−2) is the modulus of rigidity of the material (steel) and
r its radius. Upon substitution into (A 1) we get

σ =
G

4R2
s lL

θr4 = κωn, (A 5)

where

κ =
[
2/n

(
1− b2/n

)]n
. (A 6)

In figure 9 we plot σ as a function of ω for three different ratios of the wire in
order to cover a long interval of stresses. To convert the abscissa into values of ε it
is necessary to determine n as a function of ω. Currently, this is done by dividing
the domain into several intervals small enough to assure a constant value of n in
each one. For our purpose, we simply observe that n = 1 (Newtonian behaviour) is
a good approximation for ω > 2 × 10−4, while n ≈ 0.6 describes well the behaviour
for ω < 5 × 10−5. Consistently, our silicon putty behaves like a Newtonian fluid for
ε = εc > 4 × 10−4 s−1 with a viscosity µ ≈ 1.5 × 105 P, and like an Ostwald fluid for
ε < 1.67 × 10−4 s−1. Note that our measurements show that if there is a yield stress
σ0, it should be less than 2 dyn cm−2. Besides, no viscoelastic behaviour was observed
in the explored range of strain rates.

In case (A), the strain rate may be estimated as ht/h ≈ λg/ν ≈ 10−3 s−1 (see (3.1)).
Analogously, in case (B) it is given by δt/δ ≈ t−1 > 10−3 s−1 (see (4.2)). Finally, ε
for the case (C) is of the order of v/h0 ≈ 4 × 10−3 s−1, since v = 0.02 cm s−1 and
h0 ≈ 4.5 cm. As regards to the stresses, we see that typical values are given by the
hydrostatic pressure ρga ≈ 103 dyn cm−2, which is much greater than any possible
yield stress and corresponds to the Newtonian region of the rheological curve. Since
all these typical values of ε are greater than εc, we see that the cusping experiments
are all well inside the region of Newtonian behaviour of our silicon putty. This is
in agreement with the observed exponential decay of a small-amplitude sinusoidal
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Figure 9. Rheological measurements of the silicon putty.

corrugation (see figures 3a and 4). In fact, a rheology-dependent effect might be
observed in this case since the regions of larger slope (and thus larger stress) evolve
according to a local viscosity smaller than that in regions of zero slope. However, this
effect is so small that it escapes from observation.

It should be mentioned that the results for our silicon putty (figure 9) are quite
different from those reported in Dixon & Sumers (1986) for another silicon putty,
namely Dow Corning Dilatant Compound 3179. In that paper, the authors found
εc = 100 s−1, n = 1/7 and a yield stress σ0 ≈ 3250 dyn cm−2. As a consequence,
their silicon putty would not have been an appropriate material to perform our
experiments.
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